Time Series Modeling for Unemployment Prediction in Indonesia Using ARIMA (Autoregressive Integrated Moving Average) Approach
DOI:
https://doi.org/10.37476/presed.v3i1.94Kata Kunci:
Unemployment Forecasting, Time Series Analysis, Arima Approach, Economic Policy, Econometric ForecastingAbstrak
Penelitian ini bertujuan untuk mengembangkan model deret waktu yang efektif untuk memprediksi tingkat pengangguran di Indonesia menggunakan pendekatan ARIMA (Autoregressive Integrated Moving Average). Analisis dilakukan menggunakan data historis pengangguran dari Februari 2010 hingga Februari 2020. Setelah mengevaluasi berbagai konfigurasi model ARIMA, penelitian ini mengidentifikasi ARIMA (2,0,2) sebagai model dengan kinerja terbaik. Model ini menunjukkan akurasi peramalan yang unggul, dengan RMSE sebesar 0,1629445, MAE sebesar 0,1376129, dan MAPE sebesar 2,317308, serta nilai R-square yang tinggi. Hasil perkiraan model ARIMA (2,0,2) untuk Februari 2021 menunjukkan tingkat pengangguran sebesar 5,070741, dengan batas bawah 4,59359 dan batas atas 5,547891. Temuan ini memberikan wawasan berharga bagi pembuat kebijakan dan pemangku kepentingan pasar tenaga kerja di Indonesia, memungkinkan mereka untuk membuat keputusan yang tepat dan menerapkan strategi yang terarah untuk menangani tantangan pengangguran secara lebih efektif. Penerapan pendekatan ARIMA yang berhasil dalam penelitian ini menyoroti potensinya sebagai alat yang tangguh dan dapat diandalkan untuk peramalan pengangguran dalam konteks Indonesia, sekaligus memberikan kontribusi pada literatur yang ada tentang pemodelan deret waktu untuk analisis pasar tenaga kerja.
Referensi
Alkhayyat, S. L., Mohamed, H. S., Butt, N. S., & ... (2023). Modeling the asymmetric reinsurance revenues data using the partially autoregressive time series model: statistical forecasting and residuals analysis. Pakistan Journal of …. https://pjsor.com/pjsor/article/view/4123
Arora, R., Dixit, N., Sihare, M., Kinger, S., & ... (2024). Machine Learning-Driven Economic Modeling for Enhanced Unemployment Rate Prediction and Analysis. 2024 IEEE 16th …. https://ieeexplore.ieee.org/abstract/document/10847383/
Bhagat, V., Sharma, M., & Saxena, A. (2022). Modelling the nexus of macro-economic variables with WTI Crude Oil Price: A Machine Learning Approach. 2022 IEEE Region 10 …. https://ieeexplore.ieee.org/abstract/document/9864544/
Dadashova, B., Li, X., Turner, S., & Koeneman, P. (2021). Multivariate time series analysis of traffic congestion measures in urban areas as they relate to socioeconomic indicators. Socio-Economic Planning …. https://www.sciencedirect.com/science/article/pii/S0038012119305026
Fajar, M., Prasetyo, O. R., Nonalisa, S., & Wahyudi, W. (2020). Forecasting unemployment rate in the time of COVID-19 pandemic using Google trends data (case of Indonesia). mpra.ub.uni-muenchen.de. https://mpra.ub.uni-muenchen.de/id/eprint/105042
Fenga, L., & Son-Turan, S. (2020). Forecasting youth unemployment in the aftermath of the COVID-19 pandemic: The Italian case. researchsquare.com. https://www.researchsquare.com/article/rs-74374/latest
Ho, T. W. (2022). Forecasting Unemployment via Machine Learning: The use of Average Windows Forecasts. Available at SSRN 3496138. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3536699
Mogale, B. V, Montshiwa, T. V, & Tsoku, J. T. (2024). Forecasting the South African labour market indicators: A comparison of ARIMA, count series models and machine learning regressors. researchsquare.com. https://www.researchsquare.com/article/rs-5360162/latest
Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). Introduction to time series analysis and forecasting. books.google.com. https://books.google.com/books?hl=en&lr=&id=JCFiBwAAQBAJ&oi=fnd&pg=PR11&dq=unemployment+forecasting+time+series+analysis+arima+approach+economic+policy+econometric+forecasting&ots=hkkJqUH2Ig&sig=ZOtonELX3YVRfPSP1sIBv-nNVsA
Ngoc, L. D. T., Kim, K. M., Pham, V., & ... (2025). Studying of Machine Learning Models for Forecasting Macroeconomic Indicators. 2025 27th International …. https://ieeexplore.ieee.org/abstract/document/10936731/
Nyoni, T. (2019). Modeling and forecasting population in Bangladesh: a Box-Jenkins ARIMA approach. mpra.ub.uni-muenchen.de. https://mpra.ub.uni-muenchen.de/id/eprint/91394
O’donnell, J. (2022). An Exploratory Analysis of Time Series Econometric Data for RetentionForecasting Using Deep Learning. apps.dtic.mil. https://apps.dtic.mil/sti/html/trecms/AD1172383/
Tolesh, F., & Biloshchytska, S. (2024). Forecasting international migration in Kazakhstan using ARIMA models. Procedia Computer Science. https://www.sciencedirect.com/science/article/pii/S1877050923022020
Umronov, E., Kadirov, A., Abdujabborov, A., & ... (2024). Economic levels forecasting system by evaluating with more accuracy using ml, dl and ai systems. 2024 4th …. https://ieeexplore.ieee.org/abstract/document/10616869/
Wanjuki, T. M., Wagala, A., & Muriithi, D. K. (2021). Forecasting commodity price index of food and beverages in Kenya using seasonal autoregressive integrated moving average (SARIMA) models. European Journal of Mathematics …. https://ej-math.org/index.php/ejmath/article/view/80
WASEEM, M. (n.d.). " Demographic Projection: Navigating the Future of Pakistan with Box-Jenkins ARIMA Forecasting. Papers.Ssrn.Com. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=5212634
Unduhan
Diterbitkan
Cara Mengutip
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2025 Proceeding of Research and Civil Society Desemination

Artikel ini berlisensi Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.






